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10.3 One-Dimensional Search with First
Derivatives

Here we want to accomplish precisely the same goal as in the previous
section, namely to isolate a functional minimum that is bracketed by the triplet of
abscissaga, b, ¢), but utilizing an additional capability to compute the function’s
first derivative as well as its value.

In principle, we might simply search for a zero of the derivative, ignoring the
function value information, using a root finder likef1sp or zbrent (§§9.2-9.3).

It doesn't take long to rejethat idea: How do we distinguish maxima from minima?
Where do we go from initial conditions where the derivatives on one or both of
the outer bracketing points indicate that “downhill” is in the directan of the
bracketed interval?

We don'’t want to give up our strategy of maintaining a rigorous bracket on the »
minimum at all times. The only way to keep such a bracket is to update it using §
function (not derivative) information, with the central point in the bracketing triplet g
always that with the lowest function value. Therefore the role of the derivatives can=
only be to help us choose new trial points within the bracket. 3

One school of thought is to “use everything you've got”: Compute a polynomial N
of relatively high order (cubic or above) that agrees with some number of prewous:
function and derivative evaluations. For example, there is a unique cubic that agrees
with function and derivative at two points, and one can jump to the interpolated
minimum of that cubic (if there is a minimum within the bracket). Suggested by
Davidon and others, formulas for this tactic are giverilin

We like to be more conservative than this. Once superlinear convergence sets
in, it hardly matters whether its order is moderately lower or higher. In practical
problems that we have met, most function evaluations are spent in getting globall
close enough to the minimum for superlinear convergence to commence. So we a
more worried about all the funny “stiff” things that high-order polynomials can do
(cf. Figure 3.0.1b), and about their sensitivities to roundoff error.

This leads us to use derivative information only as follows: The sign of the
derivative at the central point of the bracketing triplet b, ¢) indicates uniquely
whether the next test point should be taken in the intefwah) or in the interval
(b,c). The value of this derivative and of the derivative at the second-best-so-far
point are extrapolated to zero by the secant method (inverse linear interpolation)z.
which by itself is superlinear of order 1.618. (The golden mean againilsge 57.)

We impose the same sort of restrictions on this new trial point as in Brent's method.
If the trial point must be rejected, wasect the interval under scrutiny.

Yes, we are fuddy-duddieswhen it comes to making flamboyant use of derivativez.
information in one-dimensional minimization. But we have met too many functions <
whose computed “derivativegdon’t integrate up to the function value amidn’t
accurately point the way to the minimum, usually because of roundoff errors,
sometimes because of truncation error in the method of derivative evaluation.

You will see that the following routine is closely modeled brient in the
previous section.
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400 Chapter 10.  Minimization or Maximization of Functions

FUNCTION dbrent(ax,bx,cx,f,df,tol,xmin)
INTEGER ITMAX
REAL dbrent,ax,bx,cx,tol,xmin,df,f,ZEPS
EXTERNAL df,f
PARAMETER (ITMAX=100,ZEPS=1.0e-10)
Given a function £ and its derivative function df, and given a bracketing triplet of abscissas
ax, bx, cx [such that bx is between ax and cx, and f (bx) is less than both f (ax) and
f(cx)], this routine isolates the minimum to a fractional precision of about tol using
a modification of Brent's method that uses derivatives. The abscissa of the minimum is
returned as xmin, and the minimum function value is returned as dbrent, the returned
function value.
INTEGER iter
REAL a,b,d,d1,d2,du,dv,dw,dx,e,fu,fv,fw,fx,0lde,toll,tol2,
u,ul,u2,v,w,x,xm
Comments following will point out only differences from the routine brent. Read that
routine first.
LOGICAL ok1,o0k2 Will be used as flags for whether proposed steps are accept-
a=min(ax,cx) able or not.
b=max (ax,cx)
v=bx
W=V
X=v
e=0.
fx=f (x)
fv=fx
fu=fx
dx=df (x) All our housekeeping chores are doubled by the necessity of
dv=dx moving derivative values around as well as function val-
dw=dx ues.
do 11 iter=1,ITMAX
xm=0.5% (a+b)
toll=tol*abs(x)+ZEPS
to0l2=2.%toll
if (abs(x-xm) .le. (tol2-.5%(b-a))) goto 3
if (abs(e).gt.toll) then

d1=2.*(b-a) Initialize these d’s to an out-of-bracket value.
d2=d1

if (dw.ne.dx) di1=(w-x)*dx/(dx-dw) Secant method with one point.
if (dv.ne.dx) d2=(v-x)*dx/(dx-dv) And the other.

Which of these two estimates of d shall we take? We will insist that they be within
the bracket, and on the side pointed to by the derivative at x:
ul=x+d1
u2=x+d2
ok1=((a-ul)*(ul-b).gt.0.) .and. (dx*d1l.le.0.)
ok2=((a-u2)*(u2-b) .gt.0.) .and. (dx*d2.1le.0.)
olde=e Movement on the step before last.
e=d
if (.not. (okl.or.ok2))then Take only an acceptable d, and if both
goto 1 are acceptable, then take the small-
else if (okl.and.ok2)then est one.
if (abs(d1l) .1t.abs(d2))then
d=d1
else
d=d2
endif
else if (okl)then
d=d1
else
d=d2
endif
if (abs(d) .gt.abs(0.5%olde))goto 1
u=x+d
if (u-a.lt.tol2 .or. b-u.lt.tol2) d=sign(toll,xm-x)
goto 2
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10.3 One-Dimensional Search with First Derivatives 401

endif
if(dx.ge.0.) then Decide which segment by the sign of the derivative.
e=a-x
else
e=b-x
endif
d=0.5%e Bisect, not golden section.
if(abs(d).ge.toll) then
u=x+d
fu=f (u)
else
u=x+sign(toll,d)
fu=f (u)
if (fu.gt.fx)goto 3 If the minimum step in the downbhill direction takes us uphill,
endif then we are done.
du=4df (u) Now all the housekeeping, sigh.
if (fu.le.fx) then
if(u.ge.x) then
a=x
else
b=x
endif
V=W
fv=fw
dv=dw
wW=X
fw=fx
dw=dx
X=u
fx=fu
dx=du
else
if(u.1t.x) then
a=u
else
b=u
endif
if(fu.le.fw .or. w.eq.x) then
v=w
fv=fw
dv=dw
w=u
fw=fu
dw=du
else if(fu.le.fv .or. v.eq.x .or. v.eq.w) then
v=u
fv=fu
dv=du
endif
endif

enddo 11

pause ’dbrent exceeded maximum iterations’
xmin=x

dbrent=fx

return

CITED REFERENCES AND FURTHER READING:
Acton, ES. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-

matical Association of America), pp. 55; 454—458. [1]

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-

Hall), p. 78.
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402 Chapter 10.  Minimization or Maximization of Functions

10.4 Downhill Simplex Method
Multidimensions

With this section we begin consideration of multidimensional minimization,
that is, finding the minimum of a function of more than one independent variable.
This section stands apart from those which follow, however: All of the algorithms =
after this section will make explicit use of a one-dimensional minimization algorithm
as a part of their computational strategy. This section implements an entirely:
self-contained strategy, in which one-dimensional minimization does not figure.

The downhill simplex method is due to Nelder and Medd]. The method
requires only function evaluations, not derivatives. It is not very efficient in terms
of the number of function evaluations that it requires. Powell's metl§ad.$) is
almost surely faster in all likely applications. However, the downhill simplex method
may frequently be théest method to use if the figure of merit is “get something
working quickly” for a problem whose computational burden is small.

The method has a geometrical naturalness about it which makes it delightfu
to describe or work through:

A simplex is the geometrical figure consisting, W dimensions, ofNV + 1
points (or vertices) and all their interconnecting line segments, polygonal faces, etcz
In two dimensions, a simplex is a triangle. In three dimensions it is a tetrahedron
not necessarily the regular tetrahedron. (Silngolex method of linear programming,
describedir10.8, also makes use of the geometrical concept of a simplex. Otherwise,
it is completely unrelated to the algorithm that we are describing in this section.) In
general we are only interested in simplexes that are nondegenerate, i.e., that enclo
a finite inner N-dimensional volume. If any point of a nondegenerate simplex is
taken as the origin, then th®¥ other points define vector directions that span the
N-dimensional vector space.

In one-dimensional minimization, it was possible to bracket a minimum, so that
the success of a subsequent isolation was guaranteed. Alas! There is no analogo
procedure in multidimensional space. For multidimensional minimization, the best
we can do is give our algorithm a starting guess, that isyarector of independent
variables as the first point to try. The algorithm is then supposed to make its own wa
downhill through the unimaginable complexity of @&tdimensional topography,
until it encounters a (local, at least) minimum.

The downhill simplex method must be started not just with a single point, but
with N 4 1 points, defining an initial simplex. If you think of one of these points
(it matters not which) as being your initial starting pol§, then you can take
the other N points to be

duu
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P, =Py + \e; (10.4.7

where thee;’s are N unit vectors, and wherg is a constant which is your guess
of the problem'’s characteristic length scale. (Or, you could have differgatfor
each vector direction.)

The downhill simplex method now takes a series of steps, most steps just moving
the point of the simplex where the function is largest (“highest point”) through the
opposite face of the simplex to a lower point. These steps are called reflections,



